

Putting Confidence in Ultrasound

In-situ cavitation measurements with a wireless sensor array: Applications in megasonic photomask cleaning

Nicolas Candia¹, Claudio Zanelli¹, Zhenxing Han², Petrie Yam¹ ¹ Onda Corporation, ² Applied Materials

> SPIE BACUS (Monterey, CA) September 26, 2022

Advanced Photolithography

193i and EUV lithography required for shrinking feature dimensions

September 25, 2022

What needs to be clean?

Mask cleaning processes demand zero-defects

How are photomasks cleaned?

"Megasonics" applied to surface to remove particles; dynamic process to optimize uniformity

How are photomasks cleaned?

"Megasonics" applied to surface to remove particles; dynamic process to optimize uniformity

How are photomasks cleaned?

"Megasonics" applied to surface to remove particles; dynamic process to optimize uniformity

Photomask Cleaning Challenges

Nozzle-Type Transducer

Dynamic Process:

- Acoustic uniformity
- Acoustic cavitation
- Reflections
- Flow rate
- Transducer stability
- Gas concentration
- Mask rotation rate
- Transducer sweep rate

- Transducer orientation
- Temperature
- Chemistry
- Frequency
- Generator power
- Substrate material
- Process time
- And more...

How do we control all these parameters?

How is ultrasound related to cleaning?

Acoustic Pressure (kPa)

Determine Y = F(X) to establish process window

Kim, et al. Seoul National Univ and Samsung

How is ultrasound related to cleaning?

Acoustic Pressure (kPa)

Determine Y = F(X) to establish process window

SUSS & TSMC: Damage Study

In-situ Mask Sensor Array & Proxy Sensor

Wireless Mask Sensor provides a means to make in-situ cavitation measurements

Comparing Static vs. Dynamic (Wired vs. Wireless Mask Sensor)

conditions trend at a different rate with power

Higher flow rates yield higher levels of static cavitation relative to transient cavitation

Fluid dynamics directly affect the acoustic behavior

Measurement Method

1D Pressure Profile

Integrate

Cumulative Pressure Map

- 1. Log pressure as transducer sweeps over primary sensor under representative cleaning conditions
- 2. Determine signature 1D pressure profile

- Input parameters into model e.g., transducer sweep speed, sweep range, mask rotation speed, mask size
- 4. Using the 1D pressure profile, integrate the pressure over space and time
- 5. Determine 2D cumulative pressure (CP) uniformity; units [kPa-s]

Ways to Verify Method

1. Auxiliary sensor(s)

Verified measurement accuracy of data at mask edge is < 10%

2. Proxy sensor

Verified stability of the acoustic output from transducer is < 5% (1-sigma)

3. Simulation

Verified correlation between measured and simulated 1D profiles has an $R^2 > 0.85$

4. Cleaning Trials

Test Conditions

Fixed Parameters

- Frequency: 896 [kHz]
- Rotation speed: 60 [RPM]
- Transducer sweep speed: 3.86 [mm/s]
- Nozzle-mask distance: 10 [mm]
- Medium: water
- Flow rate: 2.0 [LPM]
- Gas conc. : 8.6 [mg/L]
- Temperature: 23.5 C

Varied Two Parameters: Generator Power & Exposure Time

Comparing Generator Power *Cumulative Pressure (CP) Plots*

24 W, ∆T = 240 sec 8 7-6 5 4 3 2 11 Y [cm] 0 -1 -2 -3 -4 -5 -6 -7 -8 -8 -5 -4 -3 -2 -1 0 1 -6 2 3 5 6 7 8 -7 4 X [cm] 1,600 -240 s Cumulative Pressure Profile [kPa s] 1,400 1,200 1,000 800 600 400 200 0

Comparing Generator Power *Cumulative Pressure (CP) Plots*

Non-linearity due to fluid dynamics?

Comparing Exposure Time *Cumulative Pressure (CP) Plots*

Cumulative Pressure scales with time (as expected)

Comparing Exposure Time *Cumulative Pressure (CP) Plots*

Cumulative Pressure scales with time (as expected)

What if the Cumulative Pressure was similar?

24 W, ∆T = 360 sec 8 7-6-5-4-3 2 [m] 1 0 7 -1 -2 -3 -4 -5 -6 -7--8--8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 6 7 8 5 4 X [cm] 1,600 -360 s Cumulative Pressure Profile [kPa s] 1,400 1,200 1,000 800 600 400 200 0-8-7-6-5-4-3-2-1012345678 X [mm]

What if the Cumulative Pressure was similar?

What matters more: Time or Instantaneous Pressure?

Cleaning Trials

Aluminum sheet
150X150 mmPaintPainted alImage: Paint state
Image: Paint state
Paint state
Image: Paint state
Image: Paint state
Image: Paint state
Image: Paint state
Image: Paint state
Image: Paint state
Paint state
Image: Paint state
Paint state
Image: Paint state
Paint st

Painted aluminum sheet

Similar Cumulative Pressure

24 W, ΔT = 360 sec 40 W, ∆T = 240 sec 8 1600 8 7-7-6-6 5 4 1400 5 S [kPa 4-1200 3 2 3 2 1000 Cumulative Pressure [m] 0 -1 1 [ш] 0 ∧ -1 0 800 -2 600 -2 -3 -3 -4 400 -4 -5 -5 200 -6 -6 -7--7 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 0 X [cm] X [cm] ¥

Acoustics

Cleaning

Similar Cumulative Pressure

Cleaning only effective beyond a pressure threshold?

September 25, 2022

Cleaning is a function of both Time and Power

Threshold between 24 and 40 W?

September 25, 2022

To understand this, let's dig deeper

1. Sound wave

2. Bubble oscillation

3. Bubble implosions

Anatomy of Acoustic Spectrum

 $Ptot = \sqrt{P0^2 + Ps^2 + Pt^2}$

Spectral analysis to separate the direct field and cavitation pressure

Cumulative Pressure for the Direct Field, Stable and Transient Cavitation

Will the lower level information provide more insight?

Cumulative Pressure Distribution Ptot vs P0, Ps, Pt (40W, 240sec)

Stable Cavitation, Ps

Transient Cavitation, Pt

Cumulative Pressure Distribution Ptot vs P0, Ps, Pt (40W, 240sec)

Stable Cavitation, Ps

Transient Cavitation, Pt

Ultimately, what matters?

Ru cap EUV reflectivity damage Naoya Hayashi, et al, Dai Nippon Printing Co., Ltd., BACUS News Vol 27, Issue 7

Future work: investigate how in-situ acoustic measurements correlate with precision cleaning

Ultrasound Measurement Solutions

Visit us at: www.ondasonics.com

Ways to Verify Feasibility

1. Auxiliary sensor(s)

Verified measurement accuracy of data at mask edge is < 10%

2. Proxy sensor

Verified stability of the acoustic output from transducer is < 5% (1-sigma)

3. Simulation

Verified correlation between measured and simulated 1D profiles has an R² > 0.85

4. Cleaning Trials

Ways to Verify Feasibility

40 W, Repeatability (10X)

1. Auxiliary sensor(s)

Verified measurement accuracy of data at mask edge is < 10%

2. Proxy sensor

Verified stability of the acoustic output from transducer is < 5% (1-sigma)

3. Simulation

Verified correlation between measured and simulated 1D profiles has an $R^2 > 0.85$

4. Cleaning Trials

Ways to Verify Feasibility

1. Auxiliary sensor(s)

Verified measurement accuracy of data at mask edge is < 10%

2. Proxy sensor

Verified stability of the acoustic output from transducer is < 5% (1-sigma)

3. Simulation

Verified correlation between measured and simulated 1D profiles has an $R^2 > 0.85$

4. Cleaning Trials

Comparing Exposure Time and Power *Cumulative Pressure (CP) Plots*

Method to Measure Cavitation

Reference: IEC/TS 63001:2019

Measurement of cavitation noise in ultrasonic baths and ultrasonic reactors

Acquire data with Hydrophone

Measurement Traceability

September 25, 2022

Calibration Method

Stepped Single Frequency Comparison Technique:

Step 0 *: Calibrate Reference Hydrophone per IEC 62127-2
Step 1: Measure with Reference Hydrophone in *Cavitation Vessel*Step 2: Measure with Test Hydrophone in *Cavitation Vessel*Step 3: Determine Gain at each frequency in *Cavitation Vessel*Step 4: Apply Gain to determine sensitivity of Test Hydrophone

^{*} Reference: http://www.ondacorp.com/images/brochures/Onda_HydroCalMethod.pdf

Control Your Process with a Combined Solution

MCT-2000

MCT-1200

R&D, Absolute Reference	APPLICATION	Process Monitoring
Cavitation Pressure & Frequency (P0, Ps, Pt, F0)	PARAMETERS	Total Pressure & Frequency (Ptot, F0)
Conforms with IEC/TS 63001:2019	METHOD	
External-calibration to achieve traceability and matching	CALIBRATION	Self-calibration to achieve matching
Data saved to local memory	AUTOMATION	Real-time data transfer for continuous monitoring
Higher Performance	VALUE	Lower Cost

Resources: Talks and Publications

- Mask Sensor Arrays (wired) installed in Taiwan, Japan, USA, Germany
- Studies done to acoustically characterize the effect of:
 - Drive frequency, generator power, acoustic uniformity, nozzle distance, flow rate, sensor position, transducer orientation, etc.
- Presentations
 - <u>Cavitation Study for a 3/5 MHz Dual Nozzle Transducer</u>
 - <u>Acoustic Comparison of a 3 MHz Nozzle and Skirt Transducer</u>
 - Acoustic Characterization of a 1 MHz Skirt Transducer
 - <u>Schlieren Video of the wave propagation from a 1 MHz Skirt Transducer</u>

