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INTRODUCTION RESULTS & DISCUSSION

~ Although megasonic technology is widely used to clean photomasks, the Total P T .
stic performance IS not well understood. Of all the process parameters that Total Pressure Uniformity
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 Mask sensor measurements yield a more complex

Absorbing Liner
acoustic field from reflections off quartz mask
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Quartz  Direct field pressure trend as expected with power, namely Power o« Pressure?

Transducer « Low levels of stable and transient cavitation detected, even at high power levels

e Cauvitation level increased with the presence of a photomask.

CONCLUSIONS

Different measurement techniques were used to better understand the acoustic
performance of a megasonic photomask cleaning system. High spatial

resolution maps characterized the acoustic field. Cavitation measurements
Incident wave propagates at '”;‘I'det”tdwave i‘Sth%e?hbg’ The f?SU'ta”t SIOU”dtft'e'd indicated an absence of transient cavitation and low level stable cavitation.
reriected wave 1rom oo 0] Feveal a compiex patiern : g : : : :
an offset angle from P D Schlieren imaging demonstrated the dynamic sweeping behavior on the mask

transducer and bottom surface of quartz; from multiple reflections ; ; _ ;
some waves transmit surface. The culmination of these results help explain the novel cleaning

through the quartz mask performance.
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