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Acoustic Characterization of Two Megasonic Devices 
for Photomask Cleaning 

RESULTS & DISCUSSION 
 

METHODS 

CONCLUSIONS 
 
Although the frequency and generator power settings are equivalent, 
the acoustic performance of the nozzle and cone transducers is 
significantly different.  Clearly frequency and electrical power alone are 
not the only determinants of acoustic performance and the subsequent 
cleaning activity. 
 
For the same input power, the direct field pressure output from the 
nozzle transducer is approximately 10 times greater than that from the 
cone transducer, certainly because of its smaller footprint.  It is also 
observed that in both designs the pressure from cavitation is about two 
orders of magnitude lower than the direct pressures.   
 
So, what physical mechanism from each megasonic transducer is 
cleaning?  The results presented here indicate a significantly higher 
level of direct field pressure than stable and transient cavitation 
pressure.  However, the test conditions may not fully represent actual 
cleaning processes leaving this still an open question.   
 
Schlieren imaging highlights the complex behavior of the sound waves 
propagating between the mask, transducer, and water surface.  For 
instance, it shows the nozzle transducer jet angle affects the 
interference pattern.  Imaging the cone transducer indicates that the 
incident wave propagates at an offset angle from transducer.  The 
resultant sound field reveals a complex pattern from multiple 
reflections, yielding a “scrubbing” mechanism at both 1 and 3 MHz.   
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INTRODUCTION 
 
Wet photomask cleaning relies on megasonic agitation to enhance 
the process, but there are many challenges to reliably control 
performance in terms of particle removal efficiency (PRE) and 
damage.  Typically all that is specified about the acoustic output is 
the driving frequency and the electric power delivered to a 
transducer.  Although there are several studies on particle removal 
and pattern damage at 1 MHz, there is very little known about the 
cavitation performance at higher frequencies such as 2-4 MHz. Two 
transducer configurations are acoustically evaluated here to better 
understand how the acoustic waves interact with the substrate which 
is the basis to optimizing cleaning performance. 
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Schlieren Imaging  (Videos: HERE) 
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• Direct field pressure is ≥ 10X higher than cavitation pressure for both nozzle and cone 

• 3 MHz nozzle yields ~3X higher stable cavitation pressure than 3 MHz cone at generator powers of 1 and 2 W 

• Low levels of transient cavitation pressure under all conditions 
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